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 A video-based fall detection system was presented; which consists of data 

acquisition, image processing, feature extraction, feature selection, 

classification and finite state machine. A two-dimensional human posture 

image was represented by 12 features extracted from the generalisation of a 

silhouette shape to a quadrilateral. The corresponding feature vectors for 

three groups of human pose were statistically analysed by using a non-

parametric Kruskal Wallis test to assess the different significance level 

between them. From the statistical test, non-significant features were 

discarded. Four selected kernel-based Support Vector Machine: linear, 

quadratics, cubic and Radial Basis Function classifiers were trained to 

classify three human posture groups. Among four classifiers, the last one 

performed the best in terms of performance matric on testing set. The 

classifier outperformed others with high achievement ofaverage sensitivity, 

precision and F-score of 99.19%, 99.25% and 99.22%, respectively. Such 

pose classification model output was further used in a simple finite state 

machine to trigger the falling event alarms. The fall detection system was 

tested on different fall video sets and able to detect the presence offalling 

events in a frame sequence of videos with accuracy of 97.32% and low 

computional time. 
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1. INTRODUCTION 

Falling event detection (FED) based on computer vision is one of the components in realising a 

smart home-based surveillance system. This feature is essential to ameliorate the existing smart surveillance 

system in tracking human activities. Various falling events and anomaly movement detection techniques 

were proposed by researchers for human activity monitoring and surveillance [1], [2], where high 

performance system is one ofthe key factors to be considered in buildinga smart system. Additionally, a low 

cost system development, an effective sensor selection and short processing time for algorithm execution are 

other factors to be considered in realisingan effective real-time tracking system. 

Falling eventis an unusual anomaly event that often happens especially to seniors (> 60 years old) 

[3]. This event is defined as an accidental occurrence that causes a subject to relax at a lower place like on the 

floor or ground. This event can occur either due to intrinsic factors, such as self-inflicted health like fever, 

shortness of breath and weak joints or due to extrinsic factors, such as drug with drawal and obstruction of 

objects [4]. Although such anomaly eventsrarely happen in daily activities, however it can have adverse 

effects on health and safety in case of occurrence to the subject. Hence, early notification to the respective 
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guardian is extremely important so that an appropriate action can be takento avoid a worse situation from 

occurring, such as severe injury, disability or death.  

The World Health Organisation (WHO) projected that the percentage of senior citizensin 20 

selected Western Pacific Region countries will increase by 2030; in which the percentage rates in China, 

Korea and Japan are the highest (> 30% of total population) [5]. This will bring the countries to an aging 

nation in the next 12 years. According to WHO, 87% of senior citizens have health problems with non-

communicable diseases, such as heart disease, osteoarthritis, stroke, diabetes and Parkinson. These health 

factors can threaten their safety from falling apart from the extrinsic factors. In addition, this group is likely 

to suffer from ‘empty nest' syndrome which affects their emotional and health stability. These factors pose a 

challenge to the community, especially guardians in overseeing theirroutine activities and able to take 

appropriate fast actions in helping to minimise morbidity as well as cost of medical treatment and mortality. 

Rapid growth of computer and software technology gives positive impact on human life, especially 

in health and safety. As an example, the use of video surveillance systems (VSS) to monitor human activities 

in particular area. This computer-based system has proven to be helpful in providing useful information for 

abnormality movements tracking in public areas and workplaces, even in residential areas. However, most 

VSS, especially for home-based surveillance system are not fully automated and less efficient in detecting 

anomalies activity, where the supervision and assessment of the activities are typically closely monitored by 

the guardian or human operator. These tasks require a high level of visual focus and time consuming while 

they also in volve high remuneration costs. With increase in the number of surveillance cameras in the house 

or nursing homes, these tasks will not only be more challenging, but it will also increase the cost of 

development and maintenance. As such the VSS is more likely to record human activiesfor the post-event 

investigative material purposes. Therefore, a paradigm shift in the use of VSS is essential instead of using it 

as post-event investigations to prevent the worse occurrence of the unexpected event. 

Nowadays, camera technology spreads with extraordinary rapidity. The camera with high resolution 

with three-dimensional feature is capable toextract high meaningful features for the purpose of classification 

[6]. While in [2], they proposed a set of motion features using bio-inspired approach (GaussH-BFFNN-PD) 

in detecting an event into fall and non-fall states. However, the complexity of these high dimensional features 

is a great challenge in minimising computational time and development cost. Thus, an efficient VSS is 

indispensable to monitor human activities, particularly in the house in addressing the problem of falling 

events amongst senior citizens. Therefore, an efficient finite state machine-based FED system by using low-

dimensional quadrilateral shape-based featuresis proposed in this article. 

 

 

2. RESEARCH METHOD 

At the first stage, a pose recognition system (PRS) was developed to detect and classify the human 

pose in an image. The diversities of human postures were categorised in to three groups (denoted as A1, A2 

and A3). The first posture group, A1 consists of human performing normal activities images, such as walking 

and standing. While the second posture group, A2 includes the anomaly actions, such as bending, squatting, 

crawling, kneeling, sitting and crawling. The last group, A3 consists of second anomaly action images; for 

example, lying on side, lying down in afacing downward and upward state. The images were acquired from 

two different databases: CASIA Gait database [7] and Laboratoired ’Electronique, Informatiqueet Image 

(Le2i) [8]. The first database contributes the A1 set and the second database is used for the anomaly action 

groups; A2 and A3 as shown in Figure 1. The quadrilateral shape-based features were extracted from the 

silhouette images and four different types of kernel for Support Vector Machine (KSVM) classifiers were 

tested to classify the posture groups. The best classifier in terms of performance will be selected as PRS. 

Then, the PRS output will be fed to the finite state machine (FSM) of falling event detection. 

 

 

Group of human posture 

A1 A2 A3 

             

Figure 1. Example of human pose images in three posture groups: A1, A2 and A3 

 

 

2.1. Pre-processing 

The detection of moving objects in a video sequence is a primary step in vision-based systems. 

Unfortunately, the task becomes difficult due to dynamic changes in natural environment. Thus, various new 
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methodswere proposed to improve the detection of moving objects towords the robustness to shadows, noise 

and illumination changes [9]. In this work, the two-dimensional images received from the camera will 

undergo the background subtraction process to detect the moving object. Thecurrent foreground image, F(t) 

can be extractedfrom the image by comparing every pixel of the current image, I(t) to the background model 

image, Ib; F(t)=I(t) - Ib. This will result inseclusion of the interest object (silhouette) from the background. 

Then, the image will go through the image treatment process to reducenoise caused by several factors, such 

as scattered backgrounds and changes in illumination which may affect the formation of silhouette. 

Therefore, median filter and morphological technique are applied on the F(t) to improve the silhouette image. 

This non-linear median filter technique does not only produce noise-free images, but it is also able to 

preserve the edge boundary of a shape in the image rather than the linear filter [10]. Then, the morphology of 

the image is applied to reduce the imperfections ofshape and structure of the silhouette [11].  

The human activities in video datasets were recorded by using an uncalibrated single and multi-

stationed camera. During the shooting session, the subjects were directed to freely perform normaland 

anomaly actionsin a provided room space. Hence, the silhouette size changes in the frame will occur due to 

the variation of distance and view angle in between the object and camera during the simulation. Therefore, 

the normalisation of silhouette size is important to ensure every feature vectors extracted from a uniform 

silhouette size images. The vertical dimension of silhouette, Y will be scaled to a constant dimension, 

Y’(i.e.100 pixels),whereby the horizontal dimension of silhouette, X will be scaled tothe proportional of 

variable ratio, n between the selected Y’ and Y; where n=Y’/Y. Hence, the scaled image; X’=nX. 

 

2.2. Quadrilateral Shape Features 

The silhouette shapes will be generalised to quadrilateral shape for the purpose of minimising the 

complexity of posture. The polygonal type shape was chosen by considering the optimum form to represent 

the human posture for classification. Generally, the quadrilateral shape is derived from fourpoints (vertices) 

connection located on silhouette boundary. The boundary’s distance was equally partitioned into four parts, 

where the locations of these ended-parts (points) represent the vertices of quadrilateral shape. The starting 

point, P1was located at the highest y-axis onsilhouette's boundary and the searching order of next point 

location, Pi+1 until P4 was according to clockwise rotationas shown in Figure 2(b). This shape generalisation 

process will form asimple and common form to represent various silhouette shapes but with unique and 

distinct features. Three main feature groups were extracted from this quadrilateral shape: centroidal distance 

(Ci), side length (Si) and angular angle between vertexes (Ai) as shown in Figure 2(c). 

 

 

 
 

(a) Raw image 

 
 

(b) Segmentation and shape 

generalization 

 

 

 

 

 

 

 

 

 

 

(c)  Quadrilateral shape-based 

features 

Figure 2. The shape generalization of silhouette to quadrilateral and features extraction 

 

 

Overall, 12 feature vectors are extracted from the quadrilateral shape and the feature vectors are 

defined as follows: 

Ci=Distance in between center of mass, Cm and vertex; 

Si=Side length; 

Ai=Inner vertex angle. 

 

2.3. Feature Selection 
Feature selection is intended to further improve the performance of classification and reduce the 

processing time [12]. Thus, the entire feature vector setsof each posture group were analysed to identify 

whether there is statistical significant evidence that each of these quadrilateral-based features is capable of 

distinguishing the three groups of human posture. The Shapiro Wilk (SW) and the Levene’s (LV) tests were 
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conducted to asses the normality of distribution and homogeneity of variance, respectively. These testswere 

considered as apre-requisite of determining appropriate statistical test toinvestigate the above hypothesis 

[13]. The dataset which was neither normally distributed nor had equal variances amongst the groups was 

subjected to non-parametric Kruskal Wallis (KW) test. Whilst the dataset which was normally distributed 

with equal variances among groups was subjected to one-way ANOVA (parametric test).  

 

2.4. Pose Classification 

The Support Vector Machine (SVM) is a supervised discriminative classifier defined by a separating 

hyperplane and finding themaximum-margin hyperplane from a given data set. Multiple improvements on the 

traditional SVM wereproposed specially to classify non-linear data; among which the kernel SVM (KSVM) 

is the most effective [14]. The extended SVM algorithm allows us to fit the maximum-margin hyperplane in 

a transformed feature space. Four KSVM classifiers with various selected kernel functions: linear (lin-

KSVM), quadratic (quad-KSVM), cubic (cub-KSVM) and Radial Basis Function (RBF-KSVM) were 

considered to test the effectiveness of the quadrilateral features in differentiating the human poses and 

classifying in to three different groups of human posture. These kernels can be attained by the following 

models: 

           

lin-KSVM:(𝑥𝑚, 𝑥𝑛) = 𝑥𝑚
𝑇 𝑥𝑛    (1) 

 

quad/cub-KSVM:(𝑥𝑚, 𝑥𝑛) = (𝑥𝑚
𝑇 𝑥𝑛 + 𝑐)𝑑    (2) 

 

RBF-KSVM:(𝑥𝑚 , 𝑥𝑛) = 𝑒𝑥𝑝 (−
‖𝑥𝑚−𝑥𝑛‖

22
)    (3) 

 

where: =Kernel function 

 =Scaling factor 

𝑥𝑚, 𝑥𝑛=Vectors in the input space 

d=Degree of polynomial (quadratic: d=2; cubic: d=3) 

C=Soft margin constant 

 

2.4. Falling Event Detection 

As explained in previous section, each feature vectors sets in A1, A2 and A3 represent different 

human postures. The PRS output may represents a simple event and the sequence of simple events may 

composes a complex event, such as falling event. Therefore, the model of FED are characterised as a FSM as 

shown in Figure 3, where it consists of three event states: Normal Event 1; NE(1), Normal Event 2; NE(2) 

and Falling Event; FE. The current state depends on the past states of the system and the transition takes 

place based on the outputs provided by the PRS model. 

 

 

 
 

Figure 3. A 3-state machine for falling event detection 

 

 

The FSM for detecting falls wastested on human activities video set provided by Milegroup based at 

the University of Vigo in Spain. The dataset consists of 224 videos of seven actions and it was clustered in to 

two groups; namely normal and falling events as shown in Table 1. Each action was performed for several 

times by eight subjects of different physiques and gender. The lateral movement actions with cleanblack 

background were captured by using a single stationary camera as shown in Figure 4. 
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Table 1. Normal and Falling Events Video Sets 
Event Group Action Number of video set 

Normal Event (NE) 

1. Normal walking 
2. Exaggerated walking 

3. Jogging 

4. Bending over 
5. Sitting on the chair 

40 
40 

40 

32 
40 

Falling Event (FE) 
6. Falling 

7. Lying down 

16 

16 

 

 
Event Group: 

Action Set 
Frame Sequence 

NE: 3 

          

NE: 4 

          

NE: 5 

          

FE: 6 

          

 

Figure 4. Example of human actions in video frame sequence in MILE dataset 

 

 

2.5. Performance Evaluation 

The classification performance assessment is based on the correct and incorrect predictions numbers 

for each class, which is encoded in a confusion matrix table.From the matrix table, several global estimation 

measurements of binary and multi-classification performances can be derived as proposed in [15]. To get a 

sense of effectiveness on this small multiple classes, two performance measures: macro-averaging sensitivity 

a.k.a. recall (sensM), macro-averaging precision (precM) and macro-averaging F-Score (FscoreM) were 

considered to estimate the quality of overall classification performance [16]. The evaluation of sensM 

focusing on average per-class effectiveness of a classifier to identify class labels and it may formulated as: 

           

𝑠𝑒𝑛𝑠𝑀 =

∑
𝑡𝑝𝑖

𝑡𝑝𝑖+𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
 

  (4) 

 

Where by tpi, fpi, fni and tni are true positive, false positive, false negative and true negative for l classes 

counts, respectively. While the precM evaluation focusing on average per-class agreement of the data class 

labels with those of a classifier and precM calculated as: 

 

𝑝𝑟𝑒𝑐𝑀 =
∑

𝑡𝑝𝑖

𝑡𝑝𝑖+𝑓𝑝𝑖

𝑙
𝑖=1

𝑙
   (5) 

 

Futher evaluation of classifer accuracy is measured by observing the relations between data’s positive labels 

and those given by a classifier based on a per-class average and the harmonic mean of precision and recall; 

FscoreM formulate as: 

 

𝐹𝑠𝑐𝑜𝑟𝑒𝑀 = 2
𝑠𝑒𝑛𝑠𝑀. 𝑝𝑟𝑒𝑐𝑀
𝑠𝑒𝑛𝑠𝑀+𝑝𝑟𝑒𝑐𝑀

   (6) 

 

The best performance of classifier will be chosen as PRS model. Subsequently, the output (simple 

event) of recognition system will be fed into FSM to detect complex events; falling events. Finally, the 
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performance of FED is measured to determine the extent of their effectiveness of the system in detecting the 

presence of falling event. 

 

 

3. RESULTS AND ANALYSIS 

All tasks were done in MATLAB
®
 R2017a and Statistical Package for the Social Science (SPSS) 

V22 software, which are embedded in a notebook computer: Intel i7 processor, running Windows 10 OS, 

with 16GB of RAM. The numbers of A1, A2 and A3 samplesused for training and cross validation are 

10,000, 6910 and 10,000, respectively. All extracted feature vectors were normalised before it was 

statistically analysed and used as training and validation datasets.  

 

 3.1. Statistical Analysis 

Two thousand samples were randomly selected from the total of sample number in each group by 

using free online random sampling software; namely Research Randomizer. It eliminates the source of bias in 

samples sets and permits the use of appropriate probability theory to express the likelihood of chance as a 

source for the difference of end outcome [17]. The SW and LV tests were conducted for assessing normality 

and homogeneity of variances, respectively. The SW test summarised that all probability result, p-value to 

correspond features were less than 0.001 (N=2,000). Thus, the test rejected the hypothesis of normality for all 

features due to the conducted test resulting p-value is less than 0.05 (data significantly deviates from a 

normal distribution with 95% confidence level). While the LV test summarised the variances over all posture 

groups for each feature were not equal. These tests resulting violation of normality and homogeity of 

variance assumptionsof the parametric test, ANOVA. Therefore, the non-parametric KW test was chosen to 

determine if there are statistically significant differences between the three independent groups. 

The statistical relevance of theresults have been verified by means ofKW test, which does not 

assume gaussianity in the dataunder study. The selected test analysed all corresponding features extracted 

from the generalised quadrilateral shape of human posture. The test shows all probabilities values, pfor 

corresponding feature were below 0.001; rejecting the null hypotheses for all features (<0.05). Thus, the 

mean rank between the groups for all 12 features were statistically associated and were significantly different 

median latencies in A1, A2 and A3 (N=2,000). This concludes that non-significant features were discarded 

and the 12 features will be utilised as the attributes for classification process. 

 

3.2. Classification 

The k-fold cross validation was applied on each classifiers in which the datasets were randomly 

divided into k approximately equal size subsets (i.e k=10). Each training and validation sets were comprised 

of k-1 subsets and the remaining subset, respectively. This procedure was repeated k times and single 

estimation of the whole dataset was calculated from the combination of k-fold result. The performances of 

each classifier from 12 features are summarised in Table 2. 

 

 

Table 2. The performance of KSVM classifiers 

Performance 
Classifier 

lin-KSVM quad-KSVM cub-KSVM RBF-KSVM 

sensM 96.71% 98.31% 98.78% 99.19% 

precM 96.79% 98.31% 98.86% 99.25% 

FscoreM 96.75% 98.31% 98.82% 99.22% 

 

 

Table 2 presents the performance evaluation: macro-averaging sensitivity and precision and F-score 

of four selected classification models. In general, all KSVM models performed very well (>96%) in term of 

mean sensitivity and precision rates. The minimum and maximum sensM rates were 96.71% (lin-KSVM) and 

99.19% (RBF-KSVM), respectively. Where by the minimum and maximum precM rates were 96.79% (lin-

KSVM) and 99.25% (RBF-KSVM), respectively. While the harmonic means of sensM and precM for four 

classifiers were 96.75%, 98.31%, 98.82% and 99.22%, respectively. Where the RBF-KSVM model out 

performed other type of SVMs’ kernels models. Globally, we observed that all performances were 

proportionally increased to the kernel complexity level (linear, quadratic: polynomial of degree-2, cubic: 

polynomial of degree-3 and Gaussian). As a result, the highest performance classifier; RBF-KSVM was 

chosen as the model of PRS. 

Figure 4(a) and Figure 4(b) show the detail of RBF-KSVM’s precision and sensitivity performance 

for each class, respectively. From these matrix tables, we observed that the positive prediction rate and true 

positive rate for all classes is higher (>98%). It means the model was able to identify >98% correctness 
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classes with prediction probability rate>98% for each class. In addition, the model was incorrectly labelled 

A2 for the majority of the mislabelled cases. This is due to some of the human postures in group A2 is almost 

the same with postures in A1 and A3; precisely the pose during action changes transition, such asbending-

standing and crawling-lying down; vice versa. Consequently, this minor deficiency is expected to affect the 

performance of FED. 

 

 

  

PREDICTED CLASS  PREDICTED CLASS 

 
 

A1 A2 A3  A1 A2 A3 
A

C
T

U
A

L
 C

L
A

S
S

 

A

1 
99.67% 0.31% 0.02%  99.26% 0.45% 0.02% 

A

2 
1.07% 

98.39

% 
0.54%  0.74% 

98.94

% 
0.37% 

A

3 
0.00% 0.42% 

99.58
% 

 0.00% 0.61% 
99.61

% 

         
TruePositiveRate:   PositivePredictiveValue:  

 False Negative Rate:          False Discovery Rate:  

 (a) Sensitivity  (b)Precision  

 

Figure 4. The RBF-KSVM performance 

 

 

3.3. Fall Detection Performance 

Our FED algorithm was evaluated on 224 videos from MILE dataset; comprising two groups of 

events (NE and FE). Table 3 tabulates results of the proposed algorithm against results ofthe state-of-the-

artGaussH-BFFNN-PD fall detection algorithm in [2]. 

 

 

Table 3. The performance of FEDs 
FED model Accuracy Error Sensitivity Specificity F-score CT 

GaussH-BFFNN-PD[2] 99.30% 0.7% 98.47% 98.50% - - 

Proposed method 97.32% 2.68% 98.95% 88.24% 94.70% 198.24 ms 

 

 

Surprisingly, the proposed method was able to detect the normal and falling states with only six 

misclassified among 224 predictions (97.32%) with error rate of 2.68%. Specifically, two out of 32 fall 

detection tasks were wrongly predicted, and four FPs were detected out of 192 normal events. Whereby, the 

sensitivity and specificity rates were about 98.95% and 88.24%, respectively. Whereas, the macro-averaging 

F-score is about 94.70%. These classification performances impliedthat the overall measure of exactness 

or quality, completeness or quantity and the classifer accuracy from the fall detector were high. The overall 

performance of the proposed method was slightly low compared with [2]; however, both models were 

considered performing well in detecting the binary events with accuracy, sensitivity and specificity greater 

than 88%. Besides, the proposed algorithm computional time (CT) for each prediction process is quite fast; 

approximately 198.24 ms only. This simple feature extraction process gives an advantage on time execution 

compared to [2] which is higher due to the complexity of the motion-based features extraction process. 

 

 

4. CONCLUSION 

We have proposed a PRS based on quadrilateral shape features of silhouette. The KW test was 

conducted to asses all corresponding 12 feature vectors between three groups of human poses. Statistically, 

all proposed features were significantly different (significance level of p<0.05). In detecting and classifying 

the human poses into three posture groups, the RBF-KSVM classifier outperformed the other type of SVMs’ 

kernels, namely, lin-KSVM, quad-KSVM and cub-KSVM with sens=99.19%, prec=99.25% and 

Fscore=99.22%. Overall, all KSVMs performed very well with performance rates above 96%. Such pose 

classification model output was further used in the FSM to trigger the falling event alarms. The FSM model 

performed well (with accuracy of 97.32%) in detecting the presence of falling events in a frame sequence of 

videosand involved lowcomputional time. Nevertheless, we are keen to assess our proposed falldetection 
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model on other online falling event databases which consists of dynamic angle movement towards real-time 

application; particularly in a surveillance system. 
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